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RESONANT FREQUENCIES OF HIGHER ORDER MODES LN CYLINDRICAL

ANISOTROPIC DIELECTRIC RESONATORS
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Department of Physics, University of Western Australia, Nedlands 6009, Australia.

Abstract: An improved method is developed which allows
the determination of mode frequencies to high accuracy in
cylindrical anisotropic dielectric resonators. This is an
extension of Garault and Guillon’s method from isotropic to
anisotropic dielectrics, applied to four different classes of field
patterns. Application to high Q sapphire crystal resonators is
discussed.

INTRODUCTION

A method which calculates the frequency of the lowest
order mode in an cylindrical isotropic dielectric (1) has been
extended to higher order modes in an anisotropic crystal.
Previous equations are shown only to be valid for quasi TE
modes with even mode number in the axial direction. Four
different axial match equations are derived depending whether
they are quasi TE or quasi TM, and have an odd or even axial
mode number. A general radial match equation is derived.
Combining it with the relevant axial equation forms a set of two
coupled transcendental equations which can be be solved
numerically. To the authors’ knowledge this is the fmt general
treatment of higher order modes in an anisotropic medium,
although previously a whispering gallery mode approximation
for artisotopic crystals has been used successfully (2).

Theory is applied to two sapphire crystals of different
aspect ratios. Very good agreement is found even though the
permittivity is only about ten. The anisotropy forces the TM
mode families to be lower in frequency than the TE, which
explains the discrepancy between theory and experiment of
previous work (3).

At cryogenic temperatures sapphire resonators can exhibit

extremely high Q’s (>107) and can be used to construct ultra-
stable low noise microwave oscillators (3) (4) (5) (6). The
theory presented successfully predicts frequency shifts from
room to liquid helium temperature due to the change in
permittivity, and the tuning range of a tunable sapphire
resonator due to the effective change in height.

THEORY

Cylindrical anisotropic crystals in free space are analysed
relative to the coordinate system defiied in figure 1, with the c-
taxis of the crystal parallel to the z axis. The permittivity parallel

and perpendicular to the c-axis is defined as e= and &r

respectively. Thus e$ = et and we assume no off diagonal

terms in the permittivity tensor.

The problem is solved using Maxwell’s equations for
artisotropic meda. Applying separation of variables on the z
component of the electromagnetic field, we can writ~
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Fig.1 The open dielectric crystat is anrdysedin cytindricaf coordinates
(r,&z). Resonantfrequenciesare solved by matching tangential fields

between regions 1 and 2, and regions 1and 3.

Ezl =AJ.(k~r) ~~~ (Plexp(-jfiz) + P,exp(+j~z)) la

Eti=CK.(~u,r)~Q~# (P1exp(-j~z) + P2exp(+j(3z)) lb

Efi = E Jm(kEr)
Cos(m$)

Sin(m$)
exp(-ctz) lC

% =BJmW::~), (P1exp(-j&) + P,exp(+j&)) Id

Hz2=D&(q.,r) ~~~~, (P1exp(-j&) + P,exp(+j~z))le

Ha= F Jm(k#)
Sin(m$)

Cos(m$)
exp(-txz) lf

where kE2 = &zko2 -~2, kH2 = &,ko2 -~2 and kOut2 = B2 -ko2.

Here m is the azimuthal mode number, ~ the longitudinal
dielectric propagation constant, ~ the free space wave numb,

~W the redid propagation constant outside the dielectric, and
k~ and k~ the radial dielectric propagation constants parallel and

perpendicular to the c-axis respectively. From the z component,
Maxwell’s equations can then be used to obtain all other
electromagnetic field components (7).
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Radkd Match EXPERIMENTAL VERIFICATION

By matching tangential components of the ~ and ~ fields
between tegions 1 and 2, the following transcendental equation
is obtaind,

( — ““(x”) _&r J’m(xE) x~ ‘m

1[ K’m(y)

x~2 Jm(xE)
+ ~KK~j) ‘H ~m(xIt)

+ Y Km(Y)
)

= ~, (x~2+~y2) (x’2+y2)

x# yl
2

where xE = kE d12 , xH = k“ d12 and y = kOUtdf2 . For a fixed

diameter this equation is a function of two variables, ~ and ~.

In general y becomes imaginary for the lower order
whispering gallery mode families. In this case the Evanescent
Bessel Function becomes a Hankel Function of the second kind
(8). Hence we employ algorithms which allow complex
arguments.

Axial Match

Field components EZ and HZ must be orthogonal in space

and hence can not co-exist with the same dependence on z.
Assuming the same dependence simplifies proceedings by
allowing the axial match to be calculated independently of the
radial match. To be consistent with the z dependence in eqn. la

to eqn. If, quasi TE modes (EZ~) or quasi TM modes (H,=O)

must be assumed. Four differ&tt transcendental equation; are
derived by matching tangential fields between regions 1 and 3.
The radial and axial mode numbers are n and p respectively.

Eqn. 3a is the same as derived by Garault and Guillon (1),
which was solved with the isotropic version of Eqn. 2.

Solvinz the couu]ed eauat ions

Eqn. 2 and 3 are solved using Mathematical (9). Solutions

are found graphically on a xH2 versus y2 graph, then more

accurately using a Newton Raphson technique. For a given

value of m, eqn. 2 gives an infinite set of solutions in { x~2,y2 )

space, which are almost perpendicular to the ‘“2 axis. This

distinguishes the value of n, and whether they are TE or TM.
Eqn. 3 gives a infinite set of solutions nearly parallel to the x~2

Cvlindn “cal orienteds *

Fig. 2 shows how quasi TE and TM modes are
distinguished. To excite a TM or TE mode an E, or HZ field is

excited respectively. Analysis of azimuthal and axial mode
numbers is done by observing the ~ or E@field respectively.

TM Analysis

‘m’

TE Analysis

probe probe

o
TM Exitation

I

TE Excitation probe

probe

Fig 2. TM modes are excited by creating a Ez field, while TE modes are

excited by creating a Hz field.

Analysis of resonant modes is conducted over X-Band for
two cylindrical pieces of sapphire with different aspect ratios.
Fig. 3 and fig. 4 compare experimental and theoretical mode
frequencies, and observed open resonator Q values. There is
better agreement for the whispering gallery type families of low
axial mode number p, as they are more TM or TE like. In
reality all modes are hybrid and experimentally one can excite
higher order families with either a TM or TE probe. Percentage
difference between calculated and measured frequencies are
presented in tables 1 and 2. For modes with p=O errors are less
than. 1% which lies within estimated errors due to uncertainties
in permittivities and dimensions. Above p=2 errors can be of
the order 1% .

The permittivity of sapph~e above and below X-band has
been measured previously with slightly conflicting results (10)
(11). To be consistent with both reports we can be confident

that &z is 11.6245*.0355 and 11.355*.015 at 300 K and 4 K

respectively, and q is 9.407iLOl 2 and 9.2895*.0255 at 300

K and 4 K respectively.

For each mode family, the power radiated from an open
dielectric resonator decreases as the azimuthal mode number
increases. Hence the observed open resonator Q increases

monotonically to the room temperature limit of about 2.105,

due to intrinsic crystal losses. Some modes don’t follow this
pattern as a nearby mode maybe reactively coupled. This will
cause the Q of the lower Q mode to increase at the expense of
the other degrading (12). For the 50 mm diameter sapphire the
density of modes in the 11 GHz region is large and interacting
modes are common. In this region the mode Q curves may
decrease in Q for an increase in azimuthal mode number.

axis. Mode frequencies are solved from the intersection of
these two solution sets. Care must be taken to avoid spurious
solutions due to the restriction of p being either even or odd.
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Fig. 3 and 4 show Transverse Magnetic and Electric
mode frequencies and Q values as a function of
azimuthal mode number. Tbeoreticai points are
plotted as error bars due to uncertainties in
dimensions and permi(tivities, while experimental
points are joined by lines. Fig. 3 is for a d = 50.0
mm and h = 30.0 mm sapphue crystal. I%g. 4 is for
a d = 31.8 mm and h = 30.2 mm sapphire crystai.1--/J
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CONCLUSION

m n=2 p.O n=l p=O p=l p=z p=3 p=zl

7 -0.219

8 -0.209 -0.910 0.415

n t I , ,I 131 0.130 I -0.00306] 0.601 \ 1.40 I 2.18 I

14 -0.000994 0.547 1.30 2.12 I

15 I I -0.0627! 0.5051 1.20 I
161 0.03191 0.4541

I 171 I -0.0555 I Ill

Improved theory for multimode analysis of anisotropic
dielectric resonators was presented. This has lead us to a very
good understanding of electromagnetic resonances in sapphire
crystals, with potential application to design.
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